Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{4-[4-(dimethylamino)styryl]-1-ethylpyridinium} di-µ-iodido-bis[iodidocuprate(II)]

Yang-Feng Liu, Jian-Zhong Chen* and Chang-Cang Huang

Department of Chemistry, University of Fuzhou, Fuzhou 350002, People's Republic of China

Correspondence e-mail: j.z.chen@fzu.edu.cn

Received 6 September 2007; accepted 15 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.034; wR factor = 0.080; data-to-parameter ratio = 21.9.

The title compound, $(C_{17}H_{21}N_2)_2[Cu_2I_4]$, consists of an organic cation, 4-[4-(dimethylamino)stryl]-1-ethylpyrdinium, and an inorganic anion, $[Cu_2I_4]^{2-}$. The Cu(I) atom exhibits a trigonal coordination. The anions form discrete centrosymmetric dimers about inversion centers and are surrounded by the cations.

Related literature

For related literature, see: Asplund *et al.* (1982); Cariati *et al.* (2001); Guloy *et al.* (2001); Mehrotra & Hoffmann (1978).

Experimental

Crystal data

 $\begin{array}{l} ({\rm C}_{17}{\rm H}_{21}{\rm N}_2)_2[{\rm C}{\rm u}_2{\rm I}_4]\\ M_r = 1141.42\\ {\rm Monoclinic}, P2_1/c\\ a = 10.707 \ (4) \ {\rm \AA}\\ b = 7.367 \ (4) \ {\rm \AA}\\ c = 24.127 \ (9) \ {\rm \AA}\\ \beta = 90.908 \ (14)^\circ \end{array}$

 $V = 1902.9 (14) Å^{3}$ Z = 2 Mo K\alpha radiation \(\mu = 4.39 \text{ mm}^{-1}\) T = 293 (2) K 0.10 \times 0.10 \text{ mm}\)

Data collection

Rigaku R-AXIS RAPID imaging
plate diffractometer18111 measured reflectionsAbsorption correction: multi-scan
(ABSCOR; Higashi, 1995)
 $T_{min} = 0.645, T_{max} = 0.651$ 18111 measured reflections3506 reflections with $I > 2\sigma(I)$
 $R_{int} = 0.079$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	199 parameters
$vR(F^2) = 0.081$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.57 \text{ e } \text{\AA}^{-3}$
356 reflections	$\Delta \rho_{\rm min} = -0.68 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cu1—I2 Cu1—I1	2.5019 (9) 2.5731 (9)	Cu1-I1 ⁱ	2.5800 (10)
$\begin{array}{c} 2-Cu1-I1\\ 2-Cu1-I1^{i}\\ 1-Cu1-I1^{i}\\ 2-Cu1-Cu1^{i} \end{array}$	124.42 (3) 121.38 (3) 114.05 (3) 176.04 (4)	$\begin{array}{l} I1 - Cu1 - Cu1^{i} \\ I1^{i} - Cu1 - Cu1^{i} \\ Cu1 - I1 - Cu1^{i} \end{array}$	57.15 (2) 56.91 (3) 65.95 (3)

Symmetry code: (i) -x, -y + 2, -z + 1.

Data collection: *TEXRAY* (Molecular Structure Corporation, 1999); cell refinement: *TEXRAY*; data reduction: *TEXSAN* (Molecular Structure Corporation, 1999); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEX* (McArdle, 1995); software used to prepare material for publication: *SHELXL97*.

We are grateful for financial support from the National Natural Science Foundation of China (No. 0041814161).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2032).

References

Asplund, M., Jagner, S. & Nilsson, M. (1982). Acta Chem. Scand. A, 36, 751– 755.

Cariati, E., Ugo, R., Cariati, F., Roberto, D., Masciocchi, N., Galli, S. & Sironi, A. (2001). Adv. Mater. 13, 1665–1668.

Guloy, A.-M., Tang, Z.-J., Miranda, P.-B. & Srdanov, V.-I. (2001). *Adv. Mater.* **13**, 833–837.

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- McArdle, P. (1995). J. Appl. Cryst. 28, 65.
- Mehrotra, P.-K. & Hoffmann, R. (1978). Inorg. Chem. 17, 2187-2189.

Molecular Structure Corporation (1999). *TEXRAY* (Version 1.10) and *TEXSAN* (Version 1.10). MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, m2957 [doi:10.1107/S160053680705074X]

Bis{4-[4-(dimethylamino)styryl]-1-ethylpyridinium} di-µ-iodido-bis[iodidocuprate(II)]

Y.-F. Liu, J.-Z. Chen and C.-C. Huang

Comment

Organic-inorganic complex materials have received extensive attention in recent years owing to their interesting crystal structure and some special properties, such as nonlinear optical response (Cariati *et al.*, 2001) and luminescence (Guloy *et al.*, 2001). 4-(4-(Dimethylamino) stryl)-1-ethylpyrdinium iodide possesses large conjugation system, which will be beneficial to the nonlinera optical response. In order to understand this phenomenon better, we present here the synthesis and the structure of the title compound, (I).

As shown in Fig. 1, the crystal structure of (I) consists of an organic cation, 4-(4-(dimethylmino)stryl)-1-ethylpridinium and an in-organic anion, $[Cu_2I_4]^{2-}$. The configuration of the anion is similar to that of $[Cu_2I_4]^{2-}$ anion reported in the tetrabutylammonium salt (Asplund *et al.*, 1982). There are, however, somewhat smaller differences between the Cu—I_{terminal} and Cu—I_{bridging} ligand distances in the anion reported in tetrabutylammonium salt and in (I), *i.e.* Cu—I_{terminal} = 2.514 (2) Å, Cu—I_{bridging} = 2.566 (2) and 2.592 (2)Å in the tetrabutylammonium salt compared to 2.5019 (9), 2.5731 (9) and 2.5800 (10) Å, respectively, in (I). Moreover, the distance d(Cu—Cu) in (I), 2.8046 (13) Å, is slightly longer than that in the tetrabutylammonium salt. It seems that the Cu···Cu distance is longer than the shortest possible distance for the given coordination, but that the value 2.8046 (13) Å in (I) indicates a weak attractive Cu(I)—Cu(I) interaction (Mehrotra *et al.*, 1978). In the crystal structure, the organic cations are surround by the anions which form centrosymmetric dimers about inversion centers resulting in the organic-inorganic complex structure.

Experimental

All chemicals and reagents were analytical grade available commercially and were used without further purfication. The title compound was prepared by self-assembling reaction of CuI with 4-(4-(dimethylmino)stryl)-1-ethyl- pridinium iodide. 4-(4-(Dimethylmino)stryl)-1-ethylpridinium iodide (0.19 g, 0.5 mmol) and CuI (0.095 g, 0.5 mmol) were dissolved in 8 ml dimethylformamide (DMF). The mixed solution was stirred still clear, with the pH value being adjusted to 6 by the addition of 10% HI/DMF solution and then filtered. The resulting solution was kept at room temperature for five days to obtain brown block crystals.

Figures

Fig. 1. The molecular structure of (I), with atomic labels and 50% probability displacement ellipsoids for non-H atoms. The codes A in the symmetry related atoms of the anions is generated by the symmetry operation (-x, -y + 2, -z + 1)

Bis{4-[4-(dimethylamino)styryl]-1-ethylpyridinium} di-µ-iodido-bis[iodidocuprate(II)]

Crystal data

$(C_{17}H_{21}N_2)_2[Cu_2I_4]$	$F_{000} = 1088.0$
$M_r = 1141.42$	$D_{\rm x} = 1.992 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 14979 reflections
a = 10.707 (4) Å	$\theta = 3.2 - 27.5^{\circ}$
b = 7.367 (4) Å	$\mu = 4.39 \text{ mm}^{-1}$
c = 24.127 (9) Å	T = 293 (2) K
$\beta = 90.908 \ (14)^{\circ}$	Block, brown
$V = 1902.9 (14) \text{ Å}^3$	$0.10\times0.10\times0.10\ mm$
Z = 2	

Data collection

Rigaku R-AXIS RAPID Imaging Plate diffractometer	4356 independent reflections
Radiation source: fine-focus sealed tube	3506 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.079$
T = 293(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 3.2^{\circ}$
Absorption correction: multi-scan (Higash, 1995)	$h = -13 \rightarrow 13$
$T_{\min} = 0.645, T_{\max} = 0.651$	$k = -9 \rightarrow 9$
18111 measured reflections	$l = -31 \rightarrow 31$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.081$	$w = 1/[\sigma^2(F_o^2) + 0.277P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} = 0.002$
4356 reflections	$\Delta \rho_{max} = 0.57 \text{ e} \text{ Å}^{-3}$
199 parameters	$\Delta \rho_{min} = -0.68 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu1	-0.02181 (5)	0.88384 (8)	0.54486 (2)	0.06562 (15)
N1	0.2231 (2)	0.2381 (5)	0.60271 (12)	0.0512 (7)
N2	0.7093 (3)	0.3834 (5)	0.22097 (13)	0.0654 (9)
I1	0.16416 (2)	0.84431 (4)	0.479695 (11)	0.06287 (10)
I2	-0.05789 (2)	0.69481 (4)	0.629255 (10)	0.06314 (10)
C1	0.3368 (3)	0.1598 (6)	0.60262 (15)	0.0605 (10)
H1A	0.3621	0.0889	0.6326	0.073*
C2	0.4154 (3)	0.1826 (6)	0.55930 (15)	0.0594 (10)
H2A	0.4945	0.1308	0.5608	0.071*
C3	0.3792 (3)	0.2816 (5)	0.51307 (13)	0.0465 (7)
C4	0.2609 (3)	0.3617 (5)	0.51481 (14)	0.0497 (8)
H4A	0.2329	0.4322	0.4851	0.060*
C5	0.1864 (3)	0.3379 (5)	0.55932 (14)	0.0536 (9)
H5A	0.1081	0.3924	0.5595	0.064*
C6	0.4607 (3)	0.2970 (5)	0.46644 (14)	0.0505 (8)
H6A	0.5424	0.2567	0.4714	0.061*
C7	0.4299 (3)	0.3635 (5)	0.41694 (14)	0.0517 (8)
H7A	0.3492	0.4092	0.4133	0.062*
C8	0.5049 (3)	0.3738 (5)	0.36851 (14)	0.0478 (8)
С9	0.6319 (3)	0.3220 (5)	0.36681 (14)	0.0501 (8)
H9A	0.6717	0.2850	0.3994	0.060*
C10	0.6976 (3)	0.3246 (5)	0.31940 (14)	0.0534 (9)
H10A	0.7807	0.2876	0.3204	0.064*
C11	0.6443 (3)	0.3813 (5)	0.26860 (14)	0.0493 (8)
C12	0.5181 (3)	0.4374 (6)	0.27021 (14)	0.0591 (10)
H12A	0.4786	0.4786	0.2380	0.071*
C13	0.4540 (3)	0.4320 (6)	0.31796 (15)	0.0605 (10)
H13A	0.3711	0.4694	0.3171	0.073*
C14	0.8395 (4)	0.3222 (7)	0.21911 (19)	0.0844 (15)
H14A	0.8681	0.2915	0.2558	0.127*
H14B	0.8906	0.4177	0.2046	0.127*
H14C	0.8451	0.2174	0.1956	0.127*
C15	0.6530 (4)	0.4375 (8)	0.16883 (16)	0.0840 (15)

supplementary materials

H15A	0.5687	0.4767	0.1748	0.126*
H15B	0.6526	0.3364	0.1437	0.126*
H15C	0.7001	0.5354	0.1533	0.126*
C16	0.1340 (4)	0.2066 (7)	0.64840 (17)	0.0749 (13)
H16A	0.0757	0.3074	0.6492	0.090*
H16B	0.0863	0.0978	0.6400	0.090*
C17	0.1902 (4)	0.1865 (8)	0.70363 (17)	0.0846 (15)
H17A	0.1257	0.1675	0.7302	0.127*
H17B	0.2360	0.2946	0.7130	0.127*
H17C	0.2459	0.0844	0.7039	0.127*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0730 (3)	0.0628 (4)	0.0608 (3)	0.0051 (3)	-0.0046 (2)	0.0030(2)
N1	0.0456 (14)	0.057 (2)	0.0505 (15)	-0.0001 (14)	0.0014 (13)	0.0024 (14)
N2	0.0533 (16)	0.095 (3)	0.0483 (16)	-0.0006 (17)	0.0045 (15)	0.0059 (16)
I1	0.06111 (15)	0.05589 (18)	0.07167 (17)	0.01157 (12)	0.00291 (13)	0.00773 (12)
I2	0.05782 (15)	0.0763 (2)	0.05521 (15)	0.01122 (12)	-0.00368 (12)	0.00891 (12)
C1	0.0540 (19)	0.073 (3)	0.054 (2)	0.0093 (19)	-0.0013 (17)	0.0118 (18)
C2	0.0445 (17)	0.079 (3)	0.055 (2)	0.0116 (18)	-0.0008 (16)	0.0060 (19)
C3	0.0469 (16)	0.046 (2)	0.0466 (17)	-0.0033 (15)	-0.0019 (15)	-0.0040 (15)
C4	0.0581 (19)	0.047 (2)	0.0437 (16)	0.0083 (16)	-0.0016 (15)	-0.0035 (14)
C5	0.0477 (17)	0.060 (3)	0.0528 (19)	0.0081 (16)	-0.0018 (16)	-0.0072 (17)
C6	0.0432 (15)	0.058 (2)	0.0501 (18)	0.0031 (16)	-0.0001 (15)	-0.0037 (16)
C7	0.0489 (17)	0.054 (2)	0.0524 (18)	-0.0021 (16)	-0.0045 (16)	-0.0025 (16)
C8	0.0448 (16)	0.051 (2)	0.0471 (17)	-0.0007 (15)	0.0027 (15)	-0.0022 (15)
C9	0.0481 (16)	0.057 (2)	0.0456 (17)	-0.0023 (16)	-0.0063 (15)	0.0036 (15)
C10	0.0418 (15)	0.062 (3)	0.056 (2)	-0.0006 (16)	-0.0014 (16)	-0.0009 (17)
C11	0.0454 (16)	0.053 (2)	0.0499 (18)	-0.0024 (15)	0.0001 (15)	0.0000 (15)
C12	0.0528 (19)	0.078 (3)	0.0458 (17)	0.0059 (19)	-0.0044 (16)	0.0065 (17)
C13	0.0400 (16)	0.082 (3)	0.060(2)	0.0109 (18)	-0.0017 (16)	0.005 (2)
C14	0.061 (2)	0.121 (5)	0.072 (3)	0.014 (3)	0.021 (2)	0.011 (3)
C15	0.078 (3)	0.121 (5)	0.053 (2)	0.003 (3)	0.007 (2)	0.016 (2)
C16	0.056 (2)	0.097 (4)	0.072 (3)	-0.007 (2)	0.017 (2)	0.012 (2)
C17	0.085 (3)	0.115 (5)	0.054 (2)	-0.020(3)	0.015 (2)	-0.006 (2)

Geometric parameters (Å, °)

2.5019 (9)	С7—Н7А	0.9300
2.5731 (9)	C8—C13	1.395 (5)
2.5800 (10)	C8—C9	1.414 (5)
2.8046 (13)	C9—C10	1.352 (4)
1.333 (5)	С9—Н9А	0.9300
1.347 (4)	C10-C11	1.407 (5)
1.488 (4)	C10—H10A	0.9300
1.353 (4)	C11—C12	1.414 (5)
1.443 (5)	C12—C13	1.351 (5)
	2.5019 (9) 2.5731 (9) 2.5800 (10) 2.8046 (13) 1.333 (5) 1.347 (4) 1.488 (4) 1.353 (4) 1.443 (5)	2.5019 (9) C7—H7A 2.5731 (9) C8—C13 2.5800 (10) C8—C9 2.8046 (13) C9—C10 1.333 (5) C9—H9A 1.347 (4) C10—C11 1.488 (4) C10—H10A 1.353 (4) C11—C12 1.443 (5) C12—C13

N2—C14	1.466 (5)	C12—H12A	0.9300
I1—Cu1 ⁱ	2.5800 (10)	С13—Н13А	0.9300
C1—C2	1.362 (5)	C14—H14A	0.9600
C1—H1A	0.9300	C14—H14B	0.9600
C2—C3	1.383 (5)	C14—H14C	0.9600
C2—H2A	0.9300	C15—H15A	0.9600
C3—C4	1.398 (5)	С15—Н15В	0.9600
C3—C6	1.439 (4)	C15—H15C	0.9600
C4—C5	1.359 (5)	C16—C17	1.461 (6)
C4—H4A	0.9300	C16—H16A	0.9700
С5—Н5А	0.9300	C16—H16B	0.9700
C6—C7	1.328 (5)	С17—Н17А	0.9600
С6—Н6А	0.9300	С17—Н17В	0.9600
С7—С8	1.430 (4)	С17—Н17С	0.9600
I2—Cu1—I1	124.42 (3)	С10—С9—Н9А	118.9
I2—Cu1—I1 ⁱ	121.38 (3)	С8—С9—Н9А	118.9
I1—Cu1—I1 ⁱ	114.05 (3)	C9—C10—C11	122.1 (3)
I2—Cu1—Cu1 ⁱ	176.04 (4)	C9—C10—H10A	118.9
I1—Cu1—Cu1 ⁱ	57.15 (2)	C11—C10—H10A	118.9
I1 ⁱ —Cu1—Cu1 ⁱ	56.91 (3)	N2-C11-C10	122.4 (3)
C5—N1—C1	119.3 (3)	N2—C11—C12	121.7 (3)
C5—N1—C16	118.9 (3)	C10-C11-C12	116.0 (3)
C1—N1—C16	121.7 (3)	C13—C12—C11	120.9 (3)
C11—N2—C15	122.0 (3)	C13—C12—H12A	119.6
C11—N2—C14	121.7 (3)	C11—C12—H12A	119.6
C15—N2—C14	116.3 (3)	C12—C13—C8	123.9 (3)
Cu1—I1—Cu1 ⁱ	65.95 (3)	C12—C13—H13A	118.0
N1—C1—C2	121.2 (3)	С8—С13—Н13А	118.0
N1—C1—H1A	119.4	N2—C14—H14A	109.5
C2—C1—H1A	119.4	N2—C14—H14B	109.5
C1—C2—C3	121.0 (3)	H14A—C14—H14B	109.5
C1—C2—H2A	119.5	N2—C14—H14C	109.5
С3—С2—Н2А	119.5	H14A—C14—H14C	109.5
C2—C3—C4	116.2 (3)	H14B—C14—H14C	109.5
C2—C3—C6	120.4 (3)	N2—C15—H15A	109.5
C4—C3—C6	123.4 (3)	N2—C15—H15B	109.5
C5—C4—C3	120.8 (3)	H15A—C15—H15B	109.5
С5—С4—Н4А	119.6	N2—C15—H15C	109.5
С3—С4—Н4А	119.6	H15A—C15—H15C	109.5
N1—C5—C4	121.5 (3)	H15B—C15—H15C	109.5
N1—C5—H5A	119.3	C17—C16—N1	115.6 (3)
С4—С5—Н5А	119.3	C17—C16—H16A	108.4
C7—C6—C3	126.0 (3)	N1—C16—H16A	108.4
С7—С6—Н6А	117.0	C17—C16—H16B	108.4
С3—С6—Н6А	117.0	N1—C16—H16B	108.4
C6—C7—C8	128.3 (3)	H16A—C16—H16B	107.5
	115.0	С16—С17—Н17А	109.5

supplementary materials

С8—С7—Н7А	115.9	C16—C17—H17B	109.5
C13—C8—C9	114.8 (3)	H17A—C17—H17B	109.5
C13—C8—C7	120.9 (3)	C16—C17—H17C	109.5
C9—C8—C7	124.2 (3)	H17A—C17—H17C	109.5
C10—C9—C8	122.3 (3)	H17B—C17—H17C	109.5
I2—Cu1—I1—Cu1 ⁱ	-175.63 (4)	C13—C8—C9—C10	-1.7 (6)
I1 ⁱ —Cu1—I1—Cu1 ⁱ	0.0	C7—C8—C9—C10	176.3 (4)
C5—N1—C1—C2	0.8 (6)	C8—C9—C10—C11	0.9 (6)
C16—N1—C1—C2	176.8 (4)	C15—N2—C11—C10	178.4 (4)
N1—C1—C2—C3	-2.4 (7)	C14—N2—C11—C10	1.4 (6)
C1—C2—C3—C4	2.6 (6)	C15—N2—C11—C12	-1.9 (6)
C1—C2—C3—C6	-176.9 (4)	C14—N2—C11—C12	-178.9 (4)
C2—C3—C4—C5	-1.5 (5)	C9-C10-C11-N2	-179.7 (4)
C6—C3—C4—C5	178.0 (3)	C9-C10-C11-C12	0.6 (6)
C1—N1—C5—C4	0.3 (6)	N2-C11-C12-C13	179.1 (4)
C16—N1—C5—C4	-175.8 (4)	C10-C11-C12-C13	-1.3 (6)
C3—C4—C5—N1	0.1 (6)	C11—C12—C13—C8	0.4 (7)
C2—C3—C6—C7	169.0 (4)	C9—C8—C13—C12	1.0 (6)
C4—C3—C6—C7	-10.5 (6)	C7—C8—C13—C12	-177.0 (4)
C3—C6—C7—C8	-176.6 (4)	C5-N1-C16-C17	-148.8 (4)
C6—C7—C8—C13	173.7 (4)	C1-N1-C16-C17	35.2 (6)
C6—C7—C8—C9	-4.1 (6)		
C			

Symmetry codes: (i) -x, -y+2, -z+1.

Fig. 1